w88手机登录下载
您所在的位置:首页 > 电源技术 > 设计应用 > 基于谐波分量与有效值的神经网络负荷分解
基于谐波分量与有效值的神经网络负荷分解
2022年电子技术应用第8期
蔡雨露,聂玉虎,崔文朋,郑 哲,刘 瑞,池颖英
北京智芯微电子科技有限公司,北京100192
摘要: 非侵入式负荷分解可以从主表电流变化信息中分解出各个用电器的用电信息,方便为用电户提供更精细化、有针对性的用电管理和调度服务。当前利用一维卷积的非侵入式负荷分解算法存在分解准确率不高、新增用户用电器需要重新训练、复杂度较高的问题。基于此,利用电流有效值和傅里叶变换后的谐波分量信息,提出一种基于一维卷积神经网络的负荷分解算法,利用相似性对比分解出各个用电器电流信息,解决了新增用户或用电器需要重新训练的问题。经实验发现,所提出的方法还可以在一定程度上提高负荷分解的准确率,且复杂度较低。
中图分类号: TN911
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211760
中文引用格式: 蔡雨露,聂玉虎,崔文朋,等. 基于谐波分量与有效值的神经网络负荷分解[J].电子技术应用,2022,48(8):123-126.
英文引用格式: Cai Yulu,Nie Yuhu,Cui Wenpeng,et al. Non-intrusive residential electricity load disaggregation based on harmonic components and effective value[J]. Application of Electronic Technique,2022,48(8):123-126.
Non-intrusive residential electricity load disaggregation based on harmonic components and effective value
Cai Yulu,Nie Yuhu,Cui Wenpeng,Zheng Zhe,Liu Rui,Chi Yingying
Beijing Smart-Chip Microelectronics Technology Co.,Ltd.,Beijing 100192,China
Abstract: Non-intrusive load decomposition can decompose the electricity consumption information of each consumer from the current change information of the main meter, which is convenient for providing electricity consumers with more refined and targeted electricity management and dispatching services. The current non-intrusive load decomposition algorithm using one-dimensional convolution has the problems that the decomposition accuracy is not high, the new user appliances need to be retrained, and the complexity is high. Based on this, this paper uses the effective value of current and the harmonic component information after Fourier transform to propose a load decomposition algorithm based on one-dimensional convolutional neural network, which uses similarity comparison to decompose the current information of each consumer, and solves the new problem that increasing users or using electrical appliances requires retraining. It is found through experiments that the method proposed in this paper can also improve the accuracy of load decomposition to a certain extent, and the complexity is low.
Key words : non-intrusive load decomposition;convolutional neural network;smart gridword

0 引言

    非侵入式负荷监测(Non-Intrusive Load Monitoring,NILM)也称为非入侵式负荷分解(Non-Intrusive Load Disaggregation,NILD)[1],其通过对某一特定区域的总电表数据进行分析,可获取该范围内各用电负荷的相关信息,如负荷的数量、各负荷的类别、所处工作状态以及对应的能耗使用情况等[2]。NILM可以在不入户、不对用户用电器分别安装电表的前提下,实现对用户用电情况的监测,通过用电行为分析更精准为用户提供相应的用电服务[3],对提高供电服务水平、节省电能资源、提高用电效率等都有重要的现实意义。

    1980年,Hart[4]开创性地提出NILM的概念,所提出的监控器在电源接口处进行测量,基于对总负载的电流和电压的详细分析来确定在电负载中打开和关闭的单个设备的能耗。这种方法可以将用电器从少量电器种类中分解出来,对于用电器种类较多的情况下,则很难准确地进行分解。因此,后续不断有学者提出通过增加不同负荷特征的方式改进分解效果。负荷特征主要包括有稳态特征、暂态特征、周期性特征状态转换特征,其中暂态特征又可以细分为暂态功率波形特征、电压噪声特征等,稳态特征细分为功率的阶跃特征、稳态电流波形特征等[5]。通过研究发现,通过提取更多特征的方式进行负荷分解取得了良好的分解效果。




本文详细内容请下载:/resource/share/2000004664




作者信息

蔡雨露,聂玉虎,崔文朋,郑  哲,刘  瑞,池颖英

(北京智芯微电子科技有限公司,北京100192)




wd.jpg

此内容为AET网站原创,未经授权禁止转载。